CP Violation in B Meson Mixing from Effective Supersymmetric Higgs Bosons

Wolfgang Altmannshofer

SUSY 2011 Fermilab

August 28 - September 2, 2011

Outline

- WA, M. Carena, S. Gori, A. de la Puente arXiv:1107.3814 [hep-ph]
- WA, M. Carena in preparation

- 1 Introduction: CP Violation in B Mixing
- CP Violation in B Mixing in BMSSM Frameworks
 - Dim. 5 Higgs Operators in the Super Potential
 - Dim. 5 Higgs-Fermion Couplings in the K\u00e4hler Potential
- 3 Summary

B Mixing Basics

Schrödinger equation describing $B_q - \bar{B}_q$ mixing:

$$i\partial_t \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix} = \left(M_q + \frac{i}{2} \Gamma_q \right) \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix}$$

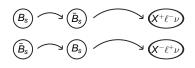
Three physical parameter:

$$|M_{12}^q| \; , \; \; |\Gamma_{12}^q| \; , \; \; \phi_q = -\mathrm{arg}\left(\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$

- $ightharpoonup \Gamma_{12}^q$ is dominated by SM tree level decays and hardly affected by NP
- \blacktriangleright M_{12}^q is loop induced and highly sensitive to NP

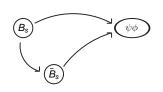
$$M_{12}^q = (M_{12}^q)_{\rm SM} \; {\sf C}_q {\sf e}^{i\phi_q^{\sf NP}}$$

▶ C_q constrained by measurements of the mass differences in the B_d and B_s mixing systems: $\Delta M_q = C_q \Delta M_q^{\rm SM}$


$$0.62 < C_d < 1.15$$
 , $0.79 < C_s < 1.23$ @ 95% C.L. (Lenz et al. '10)

CPV Observables in B_s Mixing

CP violation in $b \rightarrow s$ transitions is predicted to be very small in the SM


$$eta_s \sim \text{Arg}(\textit{V}_{ts}) \simeq 1^\circ \; , \; \phi_s^{\text{SM}} \sim 0.2^\circ \quad o \quad \text{excellent probe of NP}$$

semileptonic asymmetry

$$\begin{aligned} \mathbf{a}_{\mathsf{SL}}^{s} &= \frac{\Gamma(\bar{B}_{\mathsf{S}} \to X\ell^{+}\nu) - \Gamma(B_{\mathsf{S}} \to X\ell^{-}\nu)}{\Gamma(\bar{B}_{\mathsf{S}} \to X\ell^{+}\nu) + \Gamma(B_{\mathsf{S}} \to X\ell^{-}\nu)} \\ &= \left| \frac{\Gamma_{12}^{s}}{M_{12}^{s}} \right| \sin(\phi_{s}^{\mathsf{SM}} + \phi_{s}^{\mathsf{NP}}) \end{aligned}$$

▶ time dependent CP asymmetry in decays to CP eigenstates $B_s \rightarrow f$

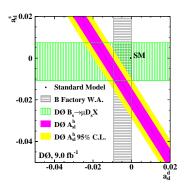
$$\begin{split} \mathbf{S}_{f} \sin(\Delta M_{s}t) &= \frac{\Gamma(\bar{B}_{s}(t) \to f) - \Gamma(B_{s}(t) \to f)}{\Gamma(\bar{B}_{s}(t) \to f) + \Gamma(B_{s}(t) \to f)} \\ &= \sin(2|\beta_{s}| - \phi_{s}^{NP}) \end{split}$$

(model independent correlation between the two observables: Ligeti, Papucci, Perez '06; Grossman, Nir, Perez '09)

like-sign dimuon charge asymmetry at D0

$$A_{\rm SL}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

 $N_b^{++}\colon {
m Number\ of\ same\ sign\ } \mu^+\mu^+ {
m\ events\ }$ from ${\it B} o \mu {\it X} {
m\ decays}$


 N_b^{--} : Number of same sign $\mu^-\mu^-$ events from $B \to \mu X$ decays

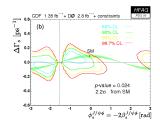
▶ Relation to the semileptonic asymmetry

$$A_{\rm SL}^b = 0.59 \ a_{\rm SL}^d + 0.41 \ a_{\rm SL}^s$$

$$A_{\rm SL}^b({\rm SM}) = (-0.28 \pm 0.06) \times 10^{-3}$$
 (Lenz, Nierste '11)
$$A_{\rm SL}^b({\rm exp}) = (-7.87 \pm 1.72 \pm 0.93) \times 10^{-3}$$

- (D0, arXiv:1106.6308)

 ► 3.9σ discrepancy!
- ▶ large NP phase in B_s mixing: $\phi_s^{NP} \simeq -\pi/2$?

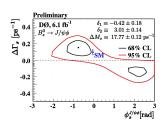


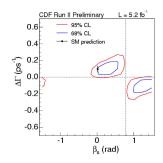
(see talk by M. Williams)

Time dependent CP asymmetry in $B_s \to \psi \phi$ at Tevatron

Status 2009

 CDF and D0 analyses seem to hint towards a large negative B_s mixing phase (2-3σ deviation from SM prediction)

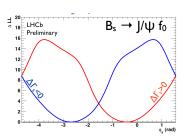

Time dependent CP asymmetry in $B_s \to \psi \phi$ at Tevatron

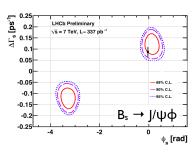

Status 2009

 CDF and D0 analyses seem to hint towards a large negative B_s mixing phase (2-3σ deviation from SM prediction)

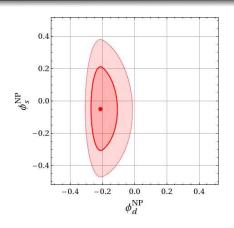
Progress in the last years

▶ updates from CDF and D0 are in better agreement with the SM ($\simeq 1\sigma$) (see talk by J. Martinez Ortega)


Time-dependent CP asymmetries at LHCb


► combination of results on $B_s \to \psi \phi$ and $B_s \to \psi f_0$

$$\phi_s = 0.03 \pm 0.16 \pm 0.07$$


► CP violation in B_s mixing seems SM like!

```
(LHCb-CONF-2011-056 ,
talk by G. Raven @ Lepton-Photon '11 ,
talk by B. Pietrzyk)
```


My naive combination

Combining data from

- ▶ like-sign dimuon charge asymmetry at D0
- ▶ time dependent CP asymmetry in $B_d \rightarrow \psi K_s$ from the B factories
- ▶ time dependent CP asymmetries in $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \psi f_0$ from LHCb

- still some room for a NP phase in B_s mixing
- ▶ preference towards a non-zero negative NP phase in B_d mixing (comes from tensions in the Unitarity Triangle fits see e.g. Lunghi, Soni '08,'11; Buras, Guadagnoli '08; Lenz et al. '10)

CP Violation in B Mixing in BMSSM Frameworks

Going Beyond the MSSM

- ▶ Lightest Higgs mass above the LEP bound requires heavy stops in the MSSM → Little Hierarchy Problem: tuning at the % level
- amount of tuning can be reduced with a modified Higgs sector: additional singlets, fat Higgs, λSUSY, ...
- ▶ if the mass scale M of the Physics Beyond the MSSM is sufficiently heavy
 → description in an effective theory is possible
- there is one unique dim. 5 operator in the super potential that contains only Higgs fields (Dine, Seiberg, Thomas '07)
 (Z: auxiliary spurion that develops an SUSY breaking F-term Z → m_Sθ²)

$$\mathcal{L} \supset \frac{\omega}{2M} \int d^2\theta (1 + \alpha Z) (\hat{H}_u \hat{H}_d)^2$$

 Introduces two additional terms in the Higgs potential (different structures than the ones present in the MSSM at tree level)

$$V_{\mathsf{Higgs}} = V_{\mathsf{MSSM}} + \left(\frac{\alpha \omega m_{\mathsf{S}}}{2M} (H_{u}H_{d})^{2} - \frac{\omega \mu}{M} (H_{u}H_{d}) (H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d}) \right) + h.c.$$

Effect on the Higgs Spectrum

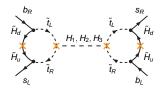
Complex α and $\omega \to$ mixing between scalar and pseudoscalar Higgs bosons

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} M_{h}^{2} & 0 & M_{hA}^{2} \\ 0 & M_{H}^{2} & M_{HA}^{2} \\ M_{hA}^{2} & M_{HA}^{2} & M_{A}^{2} \end{pmatrix} \quad , \quad \quad \begin{aligned} M_{hA}^{2} &\simeq v^{2} \frac{|\omega|\mu}{M} \sin(\phi_{\omega} + \theta) \\ M_{hA}^{2} &\simeq v^{2} \frac{|\omega|\mu}{M} \sin(\phi_{\omega} + \theta) \\ M_{HA}^{2} &\simeq -\frac{v^{2}}{2} \frac{|\alpha\omega|m_{S}}{M} \sin(\phi_{\alpha} + \phi_{\omega} + 2\theta) \end{aligned}$$

- all three neutral Higgs bosons can couple significantly to gauge bosons
- \blacktriangleright significant enhancement of the lightest Higgs mass possible for moderate $\tan\beta$

$$\delta M_{H_1}^2 \simeq rac{4v^2}{ aneta} rac{|\omega|\mu}{M} \cos(\phi_\omega + heta) + ...$$

mass splitting between the two heavy Higgs bosons


$$M_{H_3}^2 - M_{H_2}^2 \simeq v^2 \frac{|\alpha \omega| m_S}{M}$$

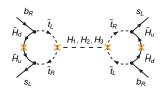
→ can lead to a very interesting Higgs collider phenomenology

WA, Carena, Gori, de la Puente '11 and talk by A. de la Puente (see Carena, Ponton, Zurita '10 for the CP conserving case)

Double Higgs Penguin Contributions to B Mixing

- sizable contributions to B mixing can come from double Higgs penguins in the large tan β regime (Buras, Chankowski, Rosiek, Slavianowska '01)

$$\propto \frac{\alpha^3}{4\pi} \frac{1}{M_A^2} (V_{tb}V_{ts}^*)^2 \frac{m_b m_s}{M_W^2} \tan^4 \beta \frac{|\mu A_t|^2}{\tilde{m}^4}$$

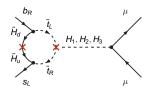

- ▶ same contribution as in the MSSM (corrected at the 1/M level)
- ▶ only relevant in B_s mixing
- sensitivity to phases of MSSM parameters only through higher order tan β resummation factors

(Carena, Menon, Noriega-Papaqui, Szynkman, Wagner '06 Hofer, Nierste, Scherer '09, Dobrescu, Fox, Martin '10)

$$\tan \beta \rightarrow \frac{\tan \beta}{1 + \epsilon_b \tan \beta}$$

Double Higgs Penguin Contributions to B Mixing

- sizable contributions to B mixing can come from double Higgs penguins in the large tan β regime (Buras, Chankowski, Rosiek, Slavianowska '01)



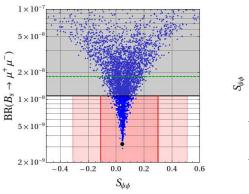
$$\propto \frac{\alpha^3}{4\pi} \frac{1}{M_A^2} (V_{tb} V_{ts}^*)^2 \frac{m_b^2}{M_W^2} \tan^4 \beta \frac{(\mu A_t)^2}{\tilde{m}^4} \frac{\alpha \omega m_S}{M} \frac{v^2}{M_A^2}$$

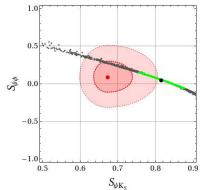
- enhanced by m_b/m_s
- lacktriangleright mainly relevant for low heavy Higgs masses $M_A^2 \sim v^2$
- lacktriangle directly sensitive to the phases of μA_t and $\alpha \omega$
- \blacktriangleright comparable contributions to B_s and B_d mixing
- ▶ main qualitative difference between the MSSM and the BMSSM in the flavor sector

Strong Constraints from $B_s \to \mu^+ \mu^-$

- ▶ Higgs Penguins also contribute to $B_s \to \mu^+ \mu^-$
- ▶ same contribution as in the MSSM (corrected at the 1/M level)

$$\sim rac{lpha_2}{4\pi} rac{1}{M_A^2} \ V_{tb} V_{ts}^* rac{m_b m_\mu}{M_W^2} an^3 eta rac{A_t \mu}{ ilde{m}^2}$$


$$\begin{split} \text{BR}(\textit{B}_{\text{S}} \to \mu^{+}\mu^{-})^{\text{exp}} < 1.1 \times 10^{-8} \quad \text{(LHCb + CMS)} \\ \text{BR}(\textit{B}_{\text{S}} \to \mu^{+}\mu^{-})^{\text{SM}} = (3.2 \pm 0.2) \times 10^{-9} \end{split}$$


bound on BR($B_{\rm S} \to \mu^+\mu^-$) strongly constrains the double penguin contributions to B mixing

▶ region of parameter space that minimizes the $B_{s} \to \mu^{+}\mu^{-}$ contraint while allowing sizable double penguin contributions to B mixing:

moderate $\tan \beta \simeq 10-15$, light Higgs bosons M_{H_2} , $M_{H_3} \simeq 200-300 {\rm GeV}$, large negative mu-term $\mu \simeq -1 {\rm TeV}$

CP Violation in B Mixing

- ▶ BR($B_s \to \mu^+ \mu^-$) severly constrains possible values for the B_s mixing phase: $S_{\psi\phi} \lesssim 0.15$ (still interesting in view of future LHCb sensitivity)
 - (B_s mixing phase completely SM-like in the MSSM with MFV; WA. Buras. Paradisi '08: WA. Buras. Gori. Paradisi. Straub '09)
 - WA, Buras, Paradisi 08, WA, Buras, Gori, Paradisi, Straub 09)
- ightharpoonup Also NP contributions to the B_d mixing phase are rather restricted
- Strong constraints also from EDMs and vacuum stability

Introducing Dim. 5 Higgs-Fermion Interactions

▶ Dimension 5 operators that involve Higgses and Fermions are possible in the Kähler potential:

(Dine, Seiberg, Thomas '07: Antoniadis, Dudas, Ghilencea, Tziveloglou '09)

$$\mathcal{L} \supset \frac{1}{M} \int d^4\theta \left(1 + Z + Z^\dagger + ZZ^\dagger \right) \left(\lambda_u \hat{H}_d^\dagger \hat{Q} \hat{U} + \lambda_d \hat{H}_u^\dagger \hat{Q} \hat{D} + \lambda_\ell \hat{H}_u^\dagger \hat{L} \hat{E} \right)$$

▶ lead to non-holomorphic Higgs fermion couplings at the tree level

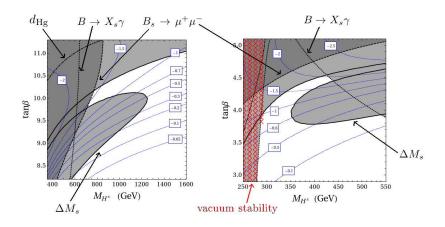
$$\mathcal{L} \supset \frac{m_{S}}{M}(\lambda_{u})_{ij} \ H_{d}^{\dagger} Q_{i} U_{j} + \frac{m_{S}}{M}(\lambda_{d})_{ij} \ H_{u}^{\dagger} Q_{i} D_{j} + \frac{m_{S}}{M}(\lambda_{\ell})_{ij} \ H_{u}^{\dagger} L_{i} E_{j}$$

- \blacktriangleright λ_f not necessarily aligned with the Yukawa couplings Y_f
- ▶ rotation to fermion mass eigenstates leads to flavor changing neutral Higgs couplings at tree level

FCNCs at Tree Level

 We assume that the wrong Higgs couplings are minimal flavor violating i.e. they can be expanded in powers of SM Yukawa couplings (D'Ambrosio, Giudice, Isidori, Strumia '02)

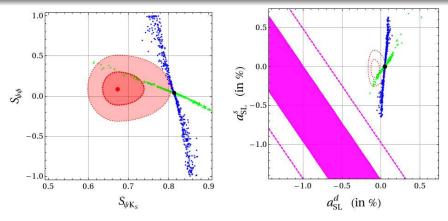
$$\frac{\textit{m}_{S}}{\textit{M}}\lambda_{\textit{d}} = \epsilon_{0}\,\textit{Y}_{\textit{d}} + \epsilon_{1}\,\textit{Y}_{\textit{d}}\,\textit{Y}_{\textit{u}}^{\dagger}\,\textit{Y}_{\textit{u}} + \epsilon_{2}\,\textit{Y}_{\textit{d}}\,\textit{Y}_{\textit{d}}^{\dagger}\,\textit{Y}_{\textit{d}} + \epsilon_{3}\,\textit{Y}_{\textit{d}}\,\textit{Y}_{\textit{u}}^{\dagger}\,\textit{Y}_{\textit{u}}\,\textit{Y}_{\textit{d}}^{\dagger}\,\textit{Y}_{\textit{d}} + \epsilon_{4}\,\textit{Y}_{\textit{d}}\,\textit{Y}_{\textit{d}}^{\dagger}\,\textit{Y}_{\textit{d}}\,\textit{Y}_{\textit{u}}^{\dagger}\,\textit{Y}_{\textit{u}} + \dots$$


- FCNCs are controlled by small CKM mixing angles and the scale of the BMSSM physics 1/M
- ▶ in the MSSM the ϵ_i are loop induced

$$O(0.01) \simeq rac{lpha_2}{4\pi} \simeq \epsilon_i^{ ext{MSSM}} \;\; \leftrightarrow \;\; \epsilon_i^{ ext{BMSSM}} \simeq rac{m_{ ext{S}}}{M} \simeq O(0.1)$$

- \blacktriangleright no need for large values of tan β to compensate the loop suppression
- ▶ similar phenomenology as in generic 2 Higgs doublet models with MFV (ϵ_i are completely free parameters)

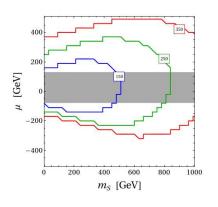
(see e.g. Buras, Carlucci, Gori, Isidori '10; Buras, Isidori, Paradisi '10)

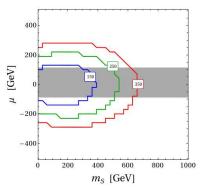

Constraints are under Control

- example scenario
 where we only consider the dim. 5 Kähler potential operators
- sizable effects in B_s mixing, small effects in B_d mixing

- example scenario
 with dim. 5 operators both in the
 Kähler and super potential
- ightharpoonup comparable effects in B_s and B_d mixing

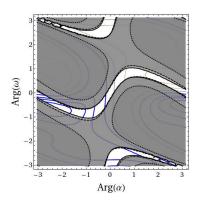
CP Violation in B Mixing


- ▶ blue points: only Kähler potential operators
 - \rightarrow LHCb bounds on B_s mixing phase prevent effects in B_d mixing phase
- green points: both K\u00e4hler and super potential operators;
 CP violation assumed to come from Higgs sector;
 - \rightarrow sizable NP phase in B_d mixing is in agreement with LHCb bounds on B_s mixing phase


Summary

- ▶ hints towards non-zero NP phase in B_d mixing from tensions in the UT triangle: $-0.31 \lesssim \phi_d^{\rm NP} \lesssim 0$
- hints towards a large B_s mixing phase from Tevatron are not confirmed by LHCb
- ▶ still some room left for a NP phase: $-0.47 \lesssim \phi_s^{\text{NP}} \lesssim 0.38$
- ▶ adding higher-dimensional operators containing Higgs fields to the MSSM can have profound impact on flavor phenomenology, in particular in B mixing and $B_s \to \mu^+ \mu^-$
- ▶ dim.5 super potential operator: CPV effects in B mixing are rather restricted due to the strong bound from BR($B_s \to \mu^+ \mu^-$) ($S_{\psi\phi} \lesssim 0.15$)
- ▶ dim.5 Kähler potential operators: CPV effects in B_d mixing are highly constrained by LHCb bounds on B_s mixing phase
- super + K\u00e4hler potential operators: non-standard CPV both in B_s and B_d mixing is generically possible

Back Up


Constraints from Vacuum Stability

$$M=2{\rm TeV}~,~|\alpha|=|\omega|=1$$

$${\rm Arg}(\alpha)={\rm Arg}(\omega)=0~({\rm left})~,~{\rm Arg}(\alpha)={\rm Arg}(\omega)=\pi/2~({\rm right})$$

Constraints from EDMs

$$\begin{split} |\omega| &= 0.4 \;\;,\;\; |\alpha \omega| = 2 \;\;,\;\; M = 6 \; \text{TeV} \\ \mu &= -950 \text{GeV} \;\;,\;\; m_{\tilde{S}} = 1000 \text{GeV} \\ m_{\tilde{t}} &= m_{\tilde{b}} = 500 \text{GeV} \;\;,\;\; m_{\tilde{q}} = m_{\tilde{\ell}} = 4 \text{TeV} \\ A_t &= -2.5 m_{\tilde{t}} \;\;,\;\; M_3 = 3 M_2 = 6 M_1 = 1.2 \text{TeV} \\ \tan \beta &= 11 \;\;,\;\; M_{H^\pm} = 240 \text{GeV} \end{split}$$

Tree Level FCNCs

$$\mathcal{L} \supset \bar{d}_{L}^{i} \frac{m_{d_{j}}}{v} V_{ti}^{*} V_{tj} X_{jj} d_{R}^{j} (c_{\alpha} H - s_{\alpha} h + iA) + \bar{u}_{L}^{i} \frac{m_{d_{j}}}{v} V_{ij} Z_{jj} d_{R}^{j} H^{+} + \text{h.c.}$$

$$Z_{ib} = \frac{t_{\beta}}{1 + \bar{\varepsilon}_{6} t_{\beta}} , \qquad X_{ib} = -\frac{(\bar{\varepsilon}_{2} + \bar{\varepsilon}_{3}) t_{\beta}^{2}}{(1 + \bar{\varepsilon}_{5} t_{\beta})(1 + \bar{\varepsilon}_{6} t_{\beta})}$$

$$X_{bi} = -\frac{(\bar{\varepsilon}_{2} + \bar{\varepsilon}_{4}) t_{\beta}^{2}}{(1 + \bar{\varepsilon}_{5} t_{\beta})(1 + \bar{\varepsilon}_{6} t_{\beta})} \left[\frac{1 + \bar{\varepsilon}_{6} t_{\beta}}{1 + \bar{\varepsilon}_{0} t_{\beta}} - \frac{1 + \bar{\varepsilon}_{6} t_{\beta}}{1 + \bar{\varepsilon}_{6} t_{\beta}} \frac{\bar{\varepsilon}_{2}^{*} + \bar{\varepsilon}_{3}^{*}}{\bar{\varepsilon}_{2} + \bar{\varepsilon}_{4}} \frac{(\bar{\varepsilon}_{1} + \bar{\varepsilon}_{3}) t_{\beta}}{1 + \bar{\varepsilon}_{0} t_{\beta}} \right]$$

$$\begin{split} \bar{\varepsilon}_0 &= \epsilon_0 \ , \quad \bar{\varepsilon}_1 = y_b^2 \epsilon_1 \ , \quad \bar{\varepsilon}_3 = y_t^2 y_b^2 \epsilon_3 \ , \quad \bar{\varepsilon}_2 = y_t^2 \epsilon_1 \ , \quad \bar{\varepsilon}_4 = y_t^2 y_b^2 \epsilon_4 \\ \\ \bar{\varepsilon}_5 &= \bar{\varepsilon}_0 + \bar{\varepsilon}_1 + \bar{\varepsilon}_2 + \bar{\varepsilon}_3 + \bar{\varepsilon}_4 \ , \quad \bar{\varepsilon}_6 = \bar{\varepsilon}_0 + \bar{\varepsilon}_1 + \bar{\varepsilon}_4 \end{split}$$